
Internationalization

This page gives guidelines to I18n for:

Plugin developers who would like to apply the i18n mechanism in their own plugin, so that this plugin can be available in several languages
People who would like to help the community by making the platform available in a new language

Principles
Although the basics of the i18n mechanism are the same for every part of the ecosystem, the packaging differs depending on what you are developing:

Translations for SonarQube: making SonarQube available in a new language requires you to develop and publish a new Language Pack plugin.
By default SonarQube embeds the English Pack.
All other Language Pack plugins, like the French Pack plugin, are hosted in the , are maintained by the community, and Plugins Forge
are available through Marketplace (category "Localization").

Translations for the SonarQube Community Plugins: open-source plugins from the SonarQube Community (hosted in the Plugins Forge) must
embed (en). Translations will be done in the Language Pack plugins.only the bundles for the default locale

Translations for other Plugins: closed-source/commercial/independent plugins must embed the bundles for the default locale the and
translations for every language they want to support.

Translation Bundles
Localized messages are stored in properties files:

These are regular properties files with key/value pairs where you put most translations
These files must be stored in the package (usually in the directory)org.sonar.l10n src/main/resources/org/sonar/l10n
The names of these files must follow the convention "<key of the plugin to translate>_<language>.properties", for example "widgetlabs_fr.
properties" or "core_fr.properties" for core bundle. See for details on plugin key derivation.sonar-packaging-maven-plugin
Messages can accept arguments. Such entries would look like:

myplugin.foo=This is a message with 2 params: the first "{0}" and the second "{1}".

Naming conventions for keys

Here is what you need to know about conventions for keys:

Table of Contents

Principles
Translation Bundles

Naming conventions for keys
How to read localized messages from a plugin extension?
Writing a Language Pack

Creating a Language Pack
Maintaining a Language Pack

Localizing a Plugin

To sum up

SonarQube Platform and SonarQube Community Plugins rely on Language Pack plugins for translations
Other independent SonarQube plugins must themselves embed all the translations they need

UTF-8 encoding

In the Java API, properties files are supposed to be encoded in ISO-8859 charset. Without good tooling, it can be quite annoying to write
translations for languages that do not fit in this charset.

, and let Maven turn them into ASCII at build time thanks to native2ascii-This is why we decided to encode the properties files in UTF-8
maven-plugin (check the French plugin pom.xml). This makes the process of writing translations with a standard editor far easier.

https://github.com/SonarQubeCommunity
https://docs.sonarqube.org/display/DEV/Developing+a+Plugin

Key Description Example

metric.<key>.name Metric name metric.ncloc.name=Lines of code

metric.<key>.description Metric description metric.ncloc.description=Non Commenting Lines of Code

notification.channel.<channel
key>

Name of notification
channel

notification.channel.EmailNotificationChannel=Email

notification.dispatcher.
<dispatcher key>

Subscription to notification
channel

notification.dispatcher.
ChangesInReviewAssignedToMeOrCreatedByMe=Changes in
review assigned to me or created by me

rule.<repository>.<key>.name Rule name rule.pmd.StringInstantiation.name=String Instantiation

rule.<repository>.<key>.param.
<param key>

Description of rule
parameter

rule.pmd.VariableNamingConventions.param.
memberSuffix=Suffix for member variables

dashboard.<key>.name Dashboard name, since
2.14.

dashboard.Hotstpots.name=Point Chauds

qualifier.<key>

qualifiers.<key>

Qualifier name, since 2.13. qualifier.TRK=Project

qualifiers.TRK=Projects

widget.<key>.name Widget name widget.alerts.name=Alerts

widget.<key>.description Widget description widget.alerts.description=Display project alerts

widget.<key>.property.
<property key>.name

Name of widget property widget.hotspot_most_violated_rules.property.
defaultSeverity.name=Default severity

widget.<key>.property.
<property key>.desc

Description of widget
property

widget.hotspot_most_violated_rules.property.
defaultSeverity.desc=If selected,
severity used to initialize the dropdown list of widget

widget.<key>.property.
<property>.option.<option>.name

Name of item of dropdown
list

widget.<key>.* Any other widget message widget.alerts.tooltip=Threshold is raised

<page key>.page Page names shown in the
left sidebar

cloud.page=Cloud

<page key>.* Any other keys used in a
page

cloud.size=Size

property.category.<category
key>

Category name of
properties, since 2.11

property.category.General=Général

property.category.<category
key>.description

Short description of
category of properties,
since 3.6

property.category.General.description=General properties
of SonarQube

property.category.<category
key>.<subcategory key>

Subcategory name of
properties, since 3.6

property.category.exclusions.global=Global exclusions

property.category.<category
key>.<subcategory key>.
description

Short description of
subcategory of properties,
since 3.6

property.category.exclusions.global.
description=Configuration of global exclusions

property.<key>.name Property name, since 2.11 property.sonar.sourceEncoding.name=Source encoding

property.<key>.description Property description, since
2.11

property.sonar.sourceEncoding.description=Source encoding

<plugin key>.* Any other keys used by
plugin

How to read localized messages from a plugin extension?

The component is available for . Scanner extensions can not load bundles.org.sonar.api.i18n.I18n web server extensions

Writing a Language Pack
A Language Pack defines bundles for SonarQube and/or plugins.

Creating a Language Pack

The easiest way to create a new pack is to copy the and adapt it to your language.French Pack

Maintaining a Language Pack

In the pom file, set the versions of SonarQube and of the plugins you want to translate.

When it's time to update your language pack for a new version of SonarQube or a plugin, the easiest way to see what keys are missing is to run:

mvn test

If the build fails, it means that some keys are missing. Go to target/l10n to check the reports for each bundle.

Missing keys are listed under 'Missing translations are:'

Report

Missing translations are:
code_viewer.no_info_displayed_due_to_security=Due to security settings, no information can be displayed.
comparison.version.latest=LATEST
...

Each time you add a new bundle or update an existing one, please create a JIRA ticket on the corresponding L10n
component in order to track changes.

Localizing a Plugin
This section applies if you are developing a closed-source plugin, or an open-source plugin that is not part of the SonarSonarQube Community Plugins
forge.

If your plugin falls in this category, it must embed its own bundles. Bundle must be defined in src/main/resources/org/sonar/l10n/<plugin key>_<language>.
properties

The default bundle is mandatory, and must be English. For example the plugin with key "mysonarplugin" must define the following files in order to enable
the French translation:

org/sonar/l10n/mysonarplugin.properties
org/sonar/l10n/mysonarplugin_fr.properties

https://github.com/SonarQubeCommunity/sonar-l10n-fr

	Internationalization

