Internationalization

Table of Contents

® Principles
® Translation Bundles
® Naming conventions for keys
® How to read localized messages from a plugin extension?
® Writing a Language Pack
® Creating a Language Pack
® Maintaining a Language Pack
® Localizing a Plugin

This page gives guidelines to 118n for:

® Plugin developers who would like to apply the i18n mechanism in their own plugin, so that this plugin can be available in several languages
® People who would like to help the community by making the platform available in a new language

Principles

Although the basics of the i18n mechanism are the same for every part of the ecosystem, the packaging differs depending on what you are developing:

® Translations for SonarQube: making SonarQube available in a new language requires you to develop and publish a new Language Pack plugin.
® By default SonarQube embeds the English Pack.
® All other Language Pack plugins, like the French Pack plugin, are hosted in the Plugins Forge, are maintained by the community, and
are available through Marketplace (category "Localization").

® Translations for the SonarQube Community Plugins: open-source plugins from the SonarQube Community (hosted in the Plugins Forge) must
embed only the bundles for the default locale (en). Translations will be done in the Language Pack plugins.

® Translations for other Plugins: closed-source/commercial/independent plugins must embed the bundles for the default locale and the
translations for every language they want to support.

@ To sum up

® SonarQube Platform and SonarQube Community Plugins rely on Language Pack plugins for translations
® Other independent SonarQube plugins must themselves embed all the translations they need

Translation Bundles

Localized messages are stored in properties files:

® These are regular properties files with key/value pairs where you put most translations

® These files must be stored in the or g. sonar . | 10n package (usually in the src/main/resources/org/sonar/I10n directory)

The names of these files must follow the convention "<key of the plugin to translate>_<language>.properties", for example "widgetlabs_fr.
properties” or "core_fr.properties” for core bundle. See sonar-packaging-maven-plugin for details on plugin key derivation.

® Messages can accept arguments. Such entries would look like:

nypl ugi n. foo=This is a nmessage with 2 parans: the first "{0}" and the second "{1}".

@ UTF-8 encoding

In the Java API, properties files are supposed to be encoded in ISO-8859 charset. Without good tooling, it can be quite annoying to write
translations for languages that do not fit in this charset.

This is why we decided to encode the properties files in UTF-8, and let Maven turn them into ASCII at build time thanks to native2ascii-
maven-plugin (check the French plugin pom.xml). This makes the process of writing translations with a standard editor far easier.

Naming conventions for keys

Here is what you need to know about conventions for keys:


https://github.com/SonarQubeCommunity
https://docs.sonarqube.org/display/DEV/Developing+a+Plugin

Key
metric. <key>. nane
metric. <key>. description

notification. channel . <channe
key>

notification. di spatcher.
<di spat cher key>
rul e. <repository>. <key>. nane

rul e. <repository>. <key>. param
<par am key>

dashboar d. <key>. nane

qual ifier.<key>
qualifiers. <key>

wi dget . <key>. nanme

wi dget . <key>. descri ption
wi dget . <key>. property.

<property key>. nane

wi dget . <key>. property.
<property key>. desc

wi dget . <key>. property.
<property>. option. <option>. nane
wi dget . <key>. *

<page key>.page

<page key>.*

property. category. <cat egory
key>

property. category. <cat egory
key>. descri ption

property. category. <cat egory
key>. <subcat egory key>
property. category. <cat egory
key>. <subcat egory key>
description

property. <key>. nane

property. <key>. description

<pl ugi n key>.*

Description
Metric name
Metric description

Name of notification
channel

Subscription to notification
channel
Rule name

Description of rule
parameter

Dashboard name, since
2.14.

Qualifier name, since 2.13.

Widget name
Widget description

Name of widget property

Description of widget
property

Name of item of dropdown
list

Any other widget message

Page names shown in the
left sidebar

Any other keys used in a
page

Category name of
properties, since 2.11

Short description of
category of properties,
since 3.6

Subcategory name of
properties, since 3.6

Short description of
subcategory of properties,
since 3.6

Property name, since 2.11

Property description, since
2.11

Any other keys used by
plugin

Example
netric.ncl oc. nane=Li nes of code
metric.ncloc.description=Non Commenting Lines of Code
notification.channel.Email Notificati onChannel =Emai |
notification. di spatcher.
Changesl nRevi ewAssi gnedToMeOr Cr eat edByMe=Changes i n
revi ew assigned to ne or created by ne
rul e.pnd. Stringlnstantiation. nane=String Instantiation

rul e. pnd. Vari abl eNani ngConventi ons. param
menber Suf fi x=Suf fix for nmenber variabl es

dashboar d. Hot st pot s. name=Poi nt Chauds

qual i fier. TRK=Proj ect

qualifiers. TRK=Projects

wi dget . al erts. name=Alerts

wi dget . al erts. description=Di splay project alerts

wi dget . hot spot _nost _vi ol at ed_rul es. property.
def aul t Severity. nane=Def aul t severity

wi dget . hot spot _nost _vi ol at ed_rul es. property.
defaul t Severity. desc=If sel ected,
severity used to initialize the dropdown list of w dget

wi dget. al erts.tool ti p=Threshold is raised

cl oud. page=d oud

cl oud. si ze=Si ze

property. category. Gener al =Génér al

property. category. Ceneral . descri pti on=CGener al
of Sonar Qube

properties

property. category. excl usi ons. gl obal =A@ obal excl usi ons

property. category. excl usi ons. gl obal .

descri ption=Configuration of global exclusions

property. sonar. sour ceEncodi ng. nane=Sour ce encodi ng

property. sonar. sour ceEncodi ng. descri pti on=Sour ce encodi ng

How to read localized messages from a plugin extension?

The component OF g. Ssonar . api . i 18n. | 18n is available for Web server extensions. scanner extensions can not load bundles.



Writing a Language Pack

A Language Pack defines bundles for SonarQube and/or plugins.

Creating a Language Pack

The easiest way to create a new pack is to copy the French Pack and adapt it to your language.

Maintaining a Language Pack
In the pom file, set the versions of SonarQube and of the plugins you want to translate.

When it's time to update your language pack for a new version of SonarQube or a plugin, the easiest way to see what keys are missing is to run:

m/n test

If the build fails, it means that some keys are missing. Go to target/I10n to check the reports for each bundle.

Missing keys are listed under 'Missing translations are:'

Report

M ssing transl ations are:
code_vi ewer. no_i nfo_di spl ayed_due_to_security=Due to security settings, no information can be displ ayed.
conpari son. version. | at est =LATEST

Each time you add a new bundle or update an existing one, please create a JIRA ticket on the corresponding L10n
component in order to track changes.

Localizing a Plugin

This section applies if you are developing a closed-source plugin, or an open-source plugin that is not part of the SonarSonarQube Community Plugins
forge.

If your plugin falls in this category, it must embed its own bundles. Bundle must be defined in src/main/resources/org/sonar/I10n/<plugin key>_<language>.
properties

The default bundle is mandatory, and must be English. For example the plugin with key "mysonarplugin” must define the following files in order to enable
the French translation:

® org/sonar/110n/ nysonar pl ugi n. properties
® org/sonar/110n/ nysonarplugin_fr.properties


https://github.com/SonarQubeCommunity/sonar-l10n-fr

	Internationalization

